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A number of studies in tetraplegic humans and healthy nonhuman
primates (NHPs) have shown that neuronal activity from reach-
related cortical areas can be used to predict reach intentions using
brain–machine interfaces (BMIs) and therefore assist tetraplegic
patients by controlling external devices (e.g., robotic limbs and
computer cursors). However, to our knowledge, there have been
no studies that have applied BMIs to eye movement areas to de-
code intended eye movements. In this study, we recorded the
activity from populations of neurons from the lateral intraparietal
area (LIP), a cortical node in the NHP saccade system. Eye move-
ment plans were predicted in real time using Bayesian inference
from small ensembles of LIP neurons without the animal making
an eye movement. Learning, defined as an increase in the predic-
tion accuracy, occurred at the level of neuronal ensembles, partic-
ularly for difficult predictions. Population learning had two
components: an update of the parameters of the BMI based on
its history and a change in the responses of individual neurons.
These results provide strong evidence that the responses of neu-
ronal ensembles can be shaped with respect to a cost function, here
the prediction accuracy of the BMI. Furthermore, eye movement
plans could be decoded without the animals emitting any actual
eyemovements and could be used to control the position of a cursor
on a computer screen. These findings show that BMIs for eye move-
ments are promising aids for assisting paralyzed patients.

learning | lateral intraparietal area | brain–machine interface |
eye movements | saccades

Brain–machine interfaces (BMIs) have been successfully used
to predict reaches and arm movements (1–7). However, little

effort has been concentrated on building a BMI based on eye
movements. This gap is surprising because the motor and neu-
ronal mechanisms of eye movements are very well understood
and arguably simpler than those of arm movements. Specifically,
eye movements are rapid and ballistic. The lateral intraparietal
cortex (LIP) is ideally suited to be the site for a BMI based on
eye movements (8). LIP neurons are known to encode eye
movement plans, among other signals such as eye position (9–
16). We recently showed that eye movement plans can be ac-
curately predicted from the responses of populations of LIP
neurons using Bayesian inference (16). The aim of the present
study was twofold. First, a BMI was used with small neuronal
ensembles of LIP neurons to predict, in real time, eye movement
plans without the animals actually making eye movements. Sec-
ond, the BMI application induced learning-related changes in
the saccade system. Learning can produce changes in reach
areas, but how learning-related changes occur at the level of LIP
neuronal ensembles is still unclear (17, 18).
Here, we show that the intended eye movement activity can be

used to accurately position a cursor on a computer screen. These
results suggest that an eye movement BMI can be used as
a prosthetic to assist locked-in patients who cannot produce eye
movements. Moreover, such an eye movement BMI can also be
used to assist tetraplegic persons to decode intended limb
movements by providing an extra channel of target position in-
formation (19). Learning, defined as an increase in the pre-
diction accuracy, occurred at the level of neuronal ensembles,
particularly for difficult predictions. The population learning had
two components: an update of the parameters of the BMI based

on its history and a change in the responses of individual neu-
rons. These results provide strong evidence that the responses of
neuronal ensembles can be shaped with respect to a cost func-
tion, which here is the prediction accuracy of the BMI. Such
learning adds additional support for the utility of an eye move-
ment BMI based on LIP activity.

Results
Instructed and Brain Control Saccade Plans. We recorded from the
LIP of two adult male monkeys, targeting a different hemisphere
in each animal. We used a microdrive with five individually ad-
justable microelectrodes to simultaneously record from small
populations of neurons. In all, 40 populations of neurons were
obtained, totaling 278 neurons (on average, 7 neurons per pop-
ulation). We used an eye movement-based BMI to study learn-
ing-related changes in the neuronal populations. This BMI was
defined by two sequential phases. First, the parameters of the
BMI were learned offline by inferring instructed planned sac-
cades from the persistent activity of populations of LIP neurons
(20). Second, eye movement plans were predicted from the
population activity in real time without overt behavior. The same
population sample was used in both phases of the task, and
each recorded session yielded a different sample of neuronal
population activity.
During the instructed trials, a real-time behavioral control unit

instructed the visual display and monitored the position of one
eye. These data were combined with the recorded neuronal data
in the data acquisition unit and saved for offline analysis (Fig.
1A). The animals performed delayed memory saccades (Materi-
als and Methods). On completion of fixation, a saccade to one of
the eight randomly chosen neighboring locations was cued. The
animals had to remember the instructed saccade and form a plan to
move their eyes. On extinction of the fixation cue, the saccade to the
cued location was executed (Fig. 1B). In this research, we exclusively
examined the memory period (red box in Fig. 1B) when the saccade
plan was made; an analysis across task epochs was previously
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presented for a different dataset (16). The spike count of each
neuron in a population across the memory period was used as
the neuronal population response. The BMI was trained offline
on these data to predict the planned saccade direction given the
neuronal population response. To address population coding in
LIP, we used Bayesian inference (16, 21–24). The activity of the
neurons was assumed to be independent, and the response
statistics were described by a truncated Gaussian distribution
(Materials and Methods). To evaluate the training of the BMI,
we computed in Fig. 1C the distribution of the saccade direction
prediction accuracies across the populations and saccade direc-
tions. Similar to previous findings (16), the saccade direction was
accurately predicted from the neuronal responses: in 83% of cases,
the prediction accuracy was above chance. The parameters of
the BMI obtained during the instructed saccades were thus an

accurate description of the inference of eye movements from
responses of small populations of neurons.
These instructed trials were followed daily by brain control

trials. In the brain control trials, the BMI predicted in real time
the saccade plans from the neuronal population response with-
out the monkey making any overt eye movements. The experi-
mental setup is an evolution of the one used in the instructed
trials, except that here the BMI makes online predictions about
the eye movement plan. Once the estimated saccade direction
was generated by the BMI, it was relayed to the real-time be-
havioral controller (Fig. 2A). The animal maintained fixation for
the entire trial and was rewarded when the planned eye move-
ment to the remembered target location was accurately pre-
dicted in real time based solely on the neuronal population
response and without an actual eye movement (Fig. 2B). If the
prediction was incorrect, the animal was shown the incorrectly
decoded plan and did not receive a reward. By providing this
feedback, we hypothesized that the animal could learn to adjust
the neuronal responses to maximize the prediction accuracy of
the BMI without performing any overt behavior.
To make these predictions, the BMI sampled the neuronal

population response in real time, in our case every 100 ms, by
computing spike counts of each neuron across a temporal in-
terval that started with the extinction of the target and ended at
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Fig. 1. Instructed trials. (A) Schematic of the experimental setup. A real-time
behavioral control unit operated the visual display and monitored eye posi-
tion. Eye position and neural signals were collected by a data acquisition unit
and analyzed offline. (B) Epochs of the task for one trial. After initial fixation,
one of eight possible target locations was briefly cued. After a variable delay,
the fixation extinguished instructing a saccade to the remembered location
of the target. Once the saccade was made the position, the target was reil-
luminated followed by a reward on correct trials. (C) Distribution of the
decoding accuracy across the 40 populations and eight saccade directions
during the memory epoch (red box in B). Eighty-three percent of saccade
directions were decoded above the 1/8 chance level (dotted line), and the
mean and SE of the decoding accuracy was 0.322 ± 0.244.
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Fig. 2. Brain control trials. (A) Schematic of the experimental setup. The
setup was similar to that used for instructed trials (Fig.1A), except a BMI unit
estimated the planned movement and provided feedback to the behavioral
control unit. (B) Epochs of the task. The trials were similar to the instructed
trials (Fig. 1B) except after the fixation target was extinguished, the animal
did not move his eyes and received feedback of the decoded location. If the
location was correct and the animal did not move his eyes, he received a re-
ward. (C) Distribution across all brain control trials of the difference between
the online decoding time (self-paced BMI) and the training time from the
instructed trials. The mean and SE were −0.03 ± 0.37.
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the time the saccade direction estimate was generated. The BMI
generated, for each sampling time, a saccade direction estimate
by updating the Bayesian decoder derived from the instructed
trials. By using the history of these estimates within a trial, the
BMI evaluated whether an estimate was stable (Materials and
Methods). When stability was achieved, the estimate was con-
sidered final and passed on to the real-time behavioral control
unit (Fig. 2A). As such, one defining feature of our BMI is that it
is self-paced: rather than using the same timescale for training
the BMI in the instructed trials, the BMI during the brain control
trials found the optimal timescale for each online estimate. This
increases the robustness of the BMI to drifts in neuronal
responses and cell isolation. The distribution of the differences
between the prediction timescales from the training and brain
control trials is shown in Fig. 2C. This distribution is strongly
peaked around zero, indicating that the BMI automatically de-
termined a decoding timescale that was on average similar to the
training timescale. However, the heavy tails of the distribution
also indicate that the best prediction accuracy was often achieved
on timescales different from training, even on shorter timescales.
This result suggests a change in the neuronal population re-
sponse, which may underlie population learning.
The second defining feature of our BMI was that its param-

eters were dynamically updated (Materials and Methods). At the
beginning of the brain control trials, the parameters of the BMI
were derived from the spike counts of each neuron in the
memory period and the instructed saccade plans. For each es-
timate generated by the BMI, the spike count and cued saccade
were used to update the database of spike counts and saccade
directions. The parameters of the BMI were then recomputed
based on this updated database. The updated BMI made pre-
dictions in the following brain control trial. Akin to recursive
Bayesian estimation, the decoder was updated by each new trial,
thus empirically learning from the data.

Population Learning. For each brain control trial, the BMI had
access to the entire trial history, namely all of the instructed trials
and all of the previous brain control trials; it could learn from its
history. To quantify this learning, we computed the change in
prediction accuracy during the brain control trials (Materials and
Methods). Fig. 3 illustrates, for one population and one saccade
direction, the increase in decoding accuracy during the brain
control trials (black area in the figure). We defined this increase
in the decoding accuracy as population learning (25) and its neu-
ronal correlates (26). To assess how much of this effect was due to
empirically updating the decoding parameters, an analysis was
performed without history. In this case, the decoder was only
trained on the instructed trials and was tested for each brain
control trial separately, thus corresponding to a BMI with frozen
parameters (red area in Fig. 3). The decoding accuracy decreased
when omitting trial history, suggesting unlearning. To quantify
population learning, a learning selectivity index (LSI) was com-
puted by comparing the last quartile (lq) and the first quartile (fq)
of the decoding accuracy during the brain control trials

LSI =
lq− fq
lq+ fq

:

The LSI varied between −1 (strong decrease in decoding accu-
racy, i.e., strong unlearning) and 1 (strong increase in decoding
accuracy, i.e., strong learning). We computed the LSI of each
population for the saccade direction that had the most brain
control trials and compared the LSI for both learning mecha-
nisms in Fig. 4A. We found that, in 78% of cases, learning with
history was stronger that learning without history (dots above the
diagonal). The LSI for learning with history was also positive in
78% of cases, showing a strong intraday learning progression.

However, in the absence of history, only 43% of LSIs were pos-
itive, indicating that unlearning frequently occurred when ignor-
ing trial history.
Next, we asked how the LSI depended on the prediction accu-

racy at the beginning of the brain control trials (Fig. 4 B and C).
When using trial history, the LSIs were dependent on the initial
decoding accuracy: they were largest for low initial decoding ac-
curacies and decreased regularly as the decoding accuracy in-
creased (Fig. 4B). These findings suggest that learning effects are
most prominent for difficult behaviors, which here are the saccade
directions that were poorly predicted. The LSIs, when ignoring
trial history, were largely independent of the decoding accuracy
(Fig. 4C). Thus, unlearning can occur independently of the
decoding accuracy. Taken together, these findings show that
learning mainly occurs when there is something to learn, e.g.,
a difficult task with a low decoding accuracy. Unlearning, however,
can occur independently of the difficulty of the task. In other
words, the prediction accuracy can increase (i.e., learning) only
when it is low to begin with, and it can decrease (i.e., unlearning)
independently of whether it is initially high or low.
The population learning and unlearning that we documented

depends on the mechanisms used by the BMI (parameters
computed with or without trial history). Moreover, the fact that
learning and unlearning occurred suggests that populations of
neurons in LIP exhibit learning-related changes that allowed
them to better use a BMI, in concordance with previous findings
in different animal models and tasks (27, 28). By providing
feedback, the animals were able to learn to use the BMI by in-
creasing the accuracy of eye movement predictions.

Contributions of Individual Neurons to Population Learning. We ex-
amined whether learning to control the BMI resulted in changes
in the activity at the level of single neurons. LIP neurons are
known to have monomodal tuning curves with respect to planned
saccade directions. To quantify the change in tuning, we com-
puted the difference between the preferred direction of each
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Fig. 3. Population learning. (A) Schematic of the two learning regimes:
learning with history in which the BMI was trained on all of the previous
trials (instructed and previous brain control trials) and learning without
history in which the BMI was trained using solely the instructed trials. (B)
Decoding accuracy as a function of the progression of brain control trials for
both learning regimes for one population of 10 neurons and one saccade
direction. The horizontal dotted line represents chance (1/8), and the vertical
line represents the transition between instructed and brain control trials.
The first and last quartiles of the decoding accuracy, used to compute the
learning selectivity index, are also indicated.
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neuron, i.e., the direction eliciting the strongest response, and
the cued direction (Fig. 5A). The preferred direction was cal-
culated from responses during either the instructed or the brain
control trials (Fig. 5A, gray and black curves, respectively). The
preferred direction was determined using a circular Gaussian
interpolation through the tuning curve, and only neurons with
a good fit (r2 > 0.7) were considered. We then computed the
distribution of the difference between the preferred and cued
directions across these neurons (Fig. 5B). This distribution for
the brain control trials had a smaller mean, SE, and circular
variance than for the instructed trials. This finding shows that
individual neurons change their response properties in the brain
control trials to shift their tuning curves toward the cued di-
rection. The cued direction thus acted as an attractor during the
brain control trials.
We finally asked whether the changes at the level of single

neurons were reflected in population learning as quantified by
the LSI (29). One neuron in each population was selected for the
strongest correlation between the LSI for learning (with history)
and difference in spike counts between the instructed and brain
control trials (Fig. 6A). The five dark dots in Fig. 6A represent
five saccade directions in which one neuron had a strong cor-
relation between the LSI and the response difference. The gray
dots represent the directions for the neuron in each population
with the largest correlation, for a total of 225 directions with
sufficient number of trials (10 or more). The findings show that
for each population there was at least one neuron that had
a change in response between instructed and brain control trials
that was reflected in the LSI. We suggest that these changes in
response were underlying the shifts in the tuning curves studied
in Fig. 5. Given that the LSI is a metric quantifying population
learning, we then studied the correlation coefficient between the
LSI and response difference for all of the neurons. Fig. 6B
illustrates how the correlation coefficients vary within each

population of neurons ordered by decreasing correlation, with
the dark line corresponding to the population of nine neurons
that included the neuron highlighted with the dark dots in Fig.
6A. The curves are decreasing, suggesting that all neurons in
a population do not contribute to the same extent to population
learning. More specifically, the population learning is sparse:
only a few neurons change their response properties to increase
the prediction accuracy of the neuronal population code during
learning. As such, the changes in the neuronal population code
can be traced back to a small subset of neurons that dominate
population learning.

Discussion
The present study demonstrates, for the first time, the successful
application of an eye movement-based BMI using LIP activity.
The populations of neurons in LIP learned to rapidly shift their
response characteristics to increase the prediction accuracy of
oculomotor plans. This learning-related change was strongest for
eye movement plans that were difficult to predict, showing that
learning effects are strongest for conditions “in which there is
something to learn.” Conversely, unlearning occurred in-
dependently of the difficulty of the condition, suggesting that
“it is always possible to unlearn.” A decoder that learned with
trial history outperformed a decoder agnostic to trial history, and
the tuning of individual neurons also changed during learning.
Therefore, the BMI learned by adjusting its parameters, and
individual neurons learned to shift their response properties to
better use the BMI. These two types of learning occurred si-
multaneously in our BMI and were successfully untangled
and examined.
Previous studies have shown that there are two general cate-

gories of learning mechanism for single neurons in BMIs (18).
For an individual neuron mechanism, each neuron is separately
manipulated to produce a particular response pattern independent
of the activity of its neighbors. For an intrinsic variable mecha-
nism, the natural repertoire of response patterns is cognitively
explored and affects not only the neuron being recorded from but
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also the more global pattern of activity of the cortical area.
In the parietal reach region, located near LIP but encoding
reaches instead of saccades, the activity of the untrained neurons
supports the intrinsic variable mechanism (18). In the current
study, either mechanism could produce the shifting of response
properties observed in LIP. Because all neurons participated in
the training, the results cannot differentiate between these two
learning mechanisms.
Our study has laid the foundations of a BMI based on eye

movements that uses neuronal responses to predict eye move-
ment plans. BMIs are poised to have significant social/engi-
neering and medical applications. In the former case, they will
usher a novel area of interaction between man and machine. In
the latter, they will help patients with limb or oculomotor pa-
ralysis regain interaction with their environment (5, 30–32). Al-
though BMIs based on arm movements, reaches, and grasping
are well established (2–4, 6, 7) and have led to successful clinical
applications (5), the current study presents the first BMI for eye
movements using populations of neurons. Such a BMI can work
per se in isolation or as a complement to an arm movement BMI
(19). An eye movement-based BMI would be highly advanta-
geous for patients who are completely paralyzed and cannot
move their eyes; that is, patients who are locked in due to strokes
or neurodegenerative disease. Such a BMI can also assist tetra-
plegic patients by providing a second movement modality to
specify the goals of intended manual movements. Using the
neuronal correlate of eye movements instead of externally
recorded physical eye movements significantly enhances the ease
of use of the interface as it does not require additional eye
tracking equipment. Finally the goal-oriented nature of signals
for ballistic saccades is well tailored for BMIs that are primarily
concerned with the end point of desired movements.

Materials and Methods
Instructed and Brain Control Task. The instructed trials have been described
previously (16). Briefly, the animals made delayed memory saccades starting
on a 3 × 3 Cartesian grid with nodes separated by 8° and ending on one of
the eight neighboring nodes (Fig. 1B). Daily, after the instructed trial ses-
sions, the animals performed brain control trials in which they maintained
fixation during the entire trial (Fig. 2B). Although no overt behavior was
performed, the animals were rewarded when the planned eye movement to

the remembered target location was accurately predicted in real time based
solely on the neuronal population response. If a wrong target was predicted,
this target was displayed as the animal maintained fixation to provide an
error signal. The brain control trials allowed us to correlate the neuronal
plasticity at the population level with the accuracy of the predicted eye
movement plan without the animal initiating a movement. Specifically, the
animals maintained fixation for 1,000 ms. A target was then flashed in the
periphery for 300 ms. While still maintaining fixation, the neuronal
responses were decoded in real time. When the decoder reached a sufficient
confidence on its prediction (see below), an estimated target location was
generated. If the estimate matched the cued target location, the fixation
was extinguished and the animal was rewarded. If the estimate differed
from the cued target, the animal had to maintain fixation while the esti-
mated target location was flashed for 300 ms. The fixation was then extin-
guished, and no reward was delivered. The animals thus had to fixate longer
and received no reward. Also, by presenting the decoded target, the animals
received visual feedback to learn to use the neuronal population activity to
generate accurate estimates. In other words, the animals had to learn to use
the decoder based on a given neuronal population sample.

The cued saccades were on a grid as described in ref. 16. However, for each
brain control session, we had the animal plan saccades specifically tailored for
the neuronal sample at hand. Because the brain control task is intrinsically
a saccade direction estimation task, the focus was on saccade direction esti-
mation and started with center-out brain control saccades in all eight direc-
tions. We then determined the best-predicted saccade directions and cued
the animal only on these. This often resulted in a two or three alternative
forced choice experiment across saccade directions contralateral to the
recorded brain hemisphere. If the animal was successful at these best brain
control saccades, the animal was finally cued to plan these saccades across the
3 × 3 grid. This behavioral strategy allowed us to (i) maintain the animal’s
motivation and (ii) focus on the oculomotor behaviors best represented by
our neuronal population sample. We thus had a vastly different number of
trials per condition, resulting in nonuniform priors for saccade direction and
presaccade eye position in a Bayesian inference framework (see below). The
eye position and saccade direction were independent behavioral variables by
design (16), and the animals only received feedback about the saccade di-
rection. All studies were carried out in compliance with the guidelines of the
Caltech Institutional Animal Care and Use Committee and the National
Institutes of Health Guide for the Care and Use of Laboratory Animals (33).

Population Recordings. We used an identical recording setup as described in
ref. 16. Briefly, we targeted the LIP area using a microdrive of five in-
dividually adjustable microelectrodes. This multielectrode technique allowed
recording from different empirical samples of population activity across
recording sessions. The same population sample was kept between the
instructed and the brain control trials (verified online by analysis of
the waveform shapes). In addition to previously mentioned reasons (16), the
recording of multiple neurons simultaneously was necessary to obtain the
best possible neuronal sampling, thereby increasing the heterogeneity of
the neuronal ensembles (24) and maximizing the prediction accuracy of
the BMI.

Inferring Saccade Plans from Neuronal Populations. We predicted eye move-
ment plans from the neuronal population response in LIP using Bayesian
inference (16, 22–24, 34–43). The neuronal population response was the
spike count of each neuron over a given temporal window (see below). The
likelihood function p(rjθ) was determined first: the probability to obtain
a population response r for a given saccade direction θ, evaluated across all
θ. The N neurons were assumed to be independent

pðrjθÞ= ∏
N

i=1
pðri jθÞ:

The response statistics of each neuron were approximated using a truncated
Gaussian distribution over positive integers

pðri jθÞ = Gðri , μi , σi , θÞZ ∞

0
Gðr, μi , σi , θÞdr

where

Gðr, μ, σ, θÞ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσðθÞ2

q exp

(
−
½r − μðθÞ�2
2σðθÞ2

)
:

This model required the empirical derivation of the mean μ(θ) and the
variance σ(θ)2 of the spike count for each saccade direction. The probability
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Fig. 6. Sparseness of population learning (with history). (A) Relation be-
tween the LSI and the difference in spike count between instructed and
brain control trials (Z score on both axes) across the 225 saccades that had 10
or more trials. For each of the 40 populations, the directions (gray dots)
corresponding to the neuron that had the strongest correlation between its
LSI and the spike count difference are represented. The five directions for
one such neuron are represented by the black dots, and the corresponding
correlation was r2 = 0.88. (B) Correlation of the LSI and the spike count
difference for all of the neurons within a population (neuron index), the
neurons being ordered by decreasing correlation (Z score on both axes). The
gray lines represent the relation between this correlation as a function of
the neuronal index. The dark line represents the neurons of the population
from which the example neuron in A (black dots) was drawn.
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to obtain a saccade direction given a behavior p(θjr)—the posterior
distribution—is then computed using Bayes’ theorem

pðθjrÞ=pðrjθÞpðθÞ
pðrÞ ,

where p(θ) is the prior function determined by the number of occurrences of
the saccade direction as instructed by the task and p(r) is the partition
function. The maximum of the posterior distribution was chosen as the es-
timate of the saccade direction corresponding to a neuronal population
activity (MAP estimation). The prediction accuracy was finally defined by the
proportion of veridical estimates evaluated across all trials.

For the instructed trials, the neuronal population response was the spike
count of each neuron across a forward temporal window starting 100 ms
after the beginning of the memory epoch to avoid the responses corre-
sponding to the visual cue bleeding into the memory epoch. The end of the
temporal window was defined by the longest memory duration that was
common to all randomized memory epochs across trials. The posterior was
evaluated using a leave-one-out cross-validation scheme to avoid overfitting
and assure a good generalization (44). Specifically, the parameters of the
posterior were built on a subset of trials, and the posterior was evaluated on
another nonoverlapping subset.

For the brain control trials, the neuronal population response was the
spike count of each neuron across a backward temporal window ending on
the time the saccade direction estimate was generated. The length of the
window was identical to the length used for the instructed trials, namely the
longest common memory duration, to avoid artifacts based on inferring
behaviors from spike counts collected over temporal windows of different
length. The posterior here was computed without cross-validation because
the parameters of the posterior were derived from a novel trial that had
never been seen before and was thus different from the brain control trials
used to compute the posterior. It was computed for learning with memory

using all of the previous trials and for learningwithoutmemory using only the
instructed trials.

BMI. In the brain control trials, we sampled neuronal responses every 100 ms
(our definition of real time). Using the neuronal population response as
defined above, the BMI generated a saccade direction estimate every 100 ms
based on the collected neuronal data until it reached a confidence level. The
confidence metric was the stability of the decoder’s estimates: when the
decoder generated the same estimate for a consecutive 400 ms (a timescale
we empirically found to be sufficiently long to yield steady-state estimates),
this estimate was deemed to be stable and hence accepted. If no stable
estimate was found within 3 s, the decoder timed out, and the cued target
location was used as an incorrect estimate. The BMI was thus self-paced.
Furthermore, the BMI was allowed to learn by incrementally updating its
neuronal response history. The database of spike counts from the instructed
and preceding brain control trials was updated by the spike count used to
generate the online direction estimate. The Bayesian decoding model
needed only to be updated for the cued condition, thus allowing for a fast
update of the decoder to satisfy the constraints imposed by a real-time BMI.
This recursive Bayesian framework corresponds to learning with feedback
because the spike count database is updated using the cued saccade di-
rection and not the estimated one because the latter may possibly make the
estimates diverge. Finally, the saccade direction estimate was computed
across the 3 × 3 nodes of the grid because saccade direction and eye position
were, by construction, independent variables. As such, the predictions of the
BMI generalized across different initial eye positions.
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